The µ problem & a non standard Higgs spectrum

Stefania Gori

The University of Chicago &

Argonne National Laboratory

SUSY 2011

Fermilab, 28.08.2011

Outline

Main topics

- Susy = light Higgs boson? The NMSSM with large λ
- The generation of the μ term (scale invariant superpotential)
- Experimental constraints
 - LEP bounds
 - EWPTs
 - DM direct detection
- The naturalness of the theory
- Higgs signatures at the LHC
- Conclusions & Outlook

Based on

R. Franceschini and S. Gori

"Solving the μ problem with a heavy Higgs boson"

JHEP 1105:084,2011 [arXiv: 1005.1070]

S. Gori

Susy = light Higgs boson?

In the MSSM

♦ At the one loop

3/14

$$m_h^2 \leq m_Z^2 \cos^2 2eta + rac{3}{4\pi^2} y_t^4 v^2 \sin^4 eta \log \left(rac{m_{ ilde{t}_1} m_{ ilde{t}_2}}{m_t^2}
ight)$$

◆ The MSSM is SM like in most part of the parameter space

LEP bound: $m_h \geq 114.4 \, \mathrm{GeV}$

Necessity of <u>rather heavy stops!</u>

Fine tuning!

since the stops contribute at one loop also to m₇

"Susy little hierarchy problem"

Susy = light Higgs boson?

In the MSSM

♦ At the one loop

$$m_h^2 \leq m_Z^2 \cos^2 2eta + rac{3}{4\pi^2} y_t^4 v^2 \sin^4 eta \log \left(rac{m_{ ilde{t}_1} m_{ ilde{t}_2}}{m_t^2}
ight)$$

◆ The MSSM is SM like in most part of the parameter space

$$\Longrightarrow$$
 LEP bound: $m_h \geq 114.4\,\mathrm{GeV}$

Necessity of rather heavy stops!

Fine tuning!

since the stops contribute at one loop also to m_z

"Susy little hierarchy problem"

In the NMSSM

At the one loop

$$egin{array}{lll} m_h^2 & \leq & m_Z^2 \cos^2 2eta + \lambda^2 v^2 \sin^2 2eta \ & + & rac{3}{4\pi^2} y_t^4 v^2 \sin^4 eta \log \left(rac{m_{ ilde{t}_1} m_{ ilde{t}_2}}{m_t^2}
ight) \end{array}$$

• If λ is **perturbative** until M_{GUT} , we can gain only \sim **20 GeV** if compared to the MSSM

What if we take large λ ?

S. Gori

- ◆ Effective field theory valid up to tens of TeV (above which, one or more Higgs reveals its composite nature)
- → It can be still **compatible** with the **unification** of the gauge couplings

Barbieri, Hall, Nomura, Rychkov - PRD 75

(Harnik, Kribs, Larson, Murayama - PRD 70, Chang, Kilic, Mahbubani -PRD 71, Birkedal, Chacko, Nomura - PRD 71)

μ problem & a non standard H spectrum

The model

A particular fat Higgs model

Low energy effective field theory:

$$W = {\color{red}\lambda} S H_1 \cdot H_2 + \frac{{\color{red}k}}{3} S^3$$

$$egin{array}{lll} V_{soft} &=& m{m_1^2} |H_1|^2 + m{m_2^2} |H_2|^2 + m{\mu_S^2} |S|^2 - (m{A} \lambda S H_1 H_2 + m{G} rac{k}{3} S^3 + h.c.) \ &+& rac{1}{8} g_1^2 (|H_2|^2 - |H_1|^2)^2 + rac{1}{8} g_2^2 \left(H_1^\dagger T^i H_1 + H_2^\dagger T^i H_2
ight)^2 \end{array}$$

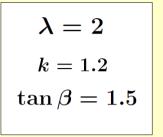
λ perturbative until ~O(10 TeV)

No dimensionfull parameters in the superpotential

The μ problem

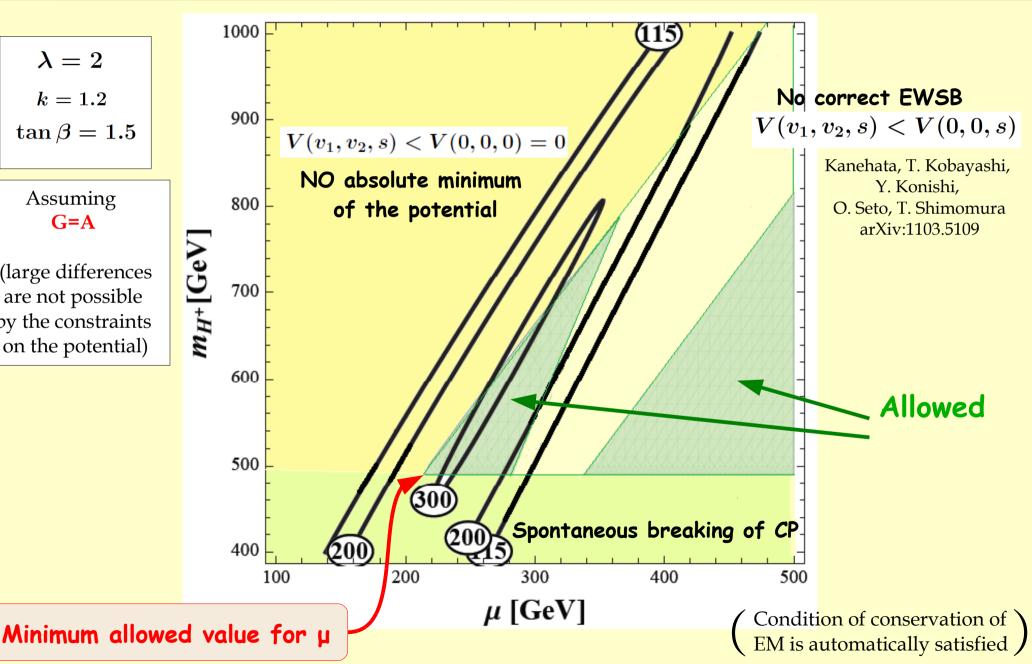
$$\mu = \lambda \langle S \rangle$$

4/14


If λ is large, is μ still at (or just above) the EW scale?

Free parameters

$$\lambda,\,k,\,A,\,G,\,m_1^2,\,m_2^2,\,\mu_S^2$$


Traded for $\tan \beta$, μ , v, thanks to the minimization conditions

The mass of the lightest Higgs boson

Assuming G=A

(large differences are not possible by the constraints on the potential)

S. Gori 5/14

µ problem & a non standard H spectrum

Generation of the µ term

$$\mu = \lambda s$$

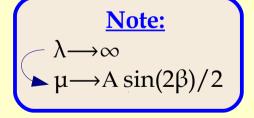
Is it constrained to be at around the EW scale by the conditions we have to impose to the scalar potential?

• $V(v_1, v_2, s) < V(0, 0, 0) = 0$ and absence of spontaneous CP breaking. In the <u>large λ limit</u>:

$$\mu^2 \gtrsim rac{\lambda^2 v^2}{2} \sin^2 2eta - rac{m_Z^2}{4} \cos^2 2eta$$

◆ The absence of a tachionic Higgs and $V(v_1, v_2, s) < V(0, 0, 0) = 0$ in the <u>large λ limit</u> and for $k < \lambda$

$$\mu \lesssim \frac{v\lambda\sin2\beta}{2}\frac{3(\rho-4)\rho+\sqrt{8(\rho-1)(5\rho-7)}+9}{(\rho-5)(\rho-1)} \simeq \frac{3}{2}v\lambda\sin2\beta + O\left(\rho\right)v\lambda \qquad \rho=k/\lambda$$


The mass of the chargino is rather constrained

$$\int_{\Gamma} rac{\lambda v}{\sqrt{2}} \sin 2eta \lesssim \mu \lesssim rac{3\lambda v}{2} \sin 2eta$$

Where λv is the scale of the lightest Higgs mass

u is just above the EW scale

Large λ

Higgs and chargino not seen at LEP

Experimental constraints (1)

Is this theory viable in spite of the several experimental constraints?

<u>▶ LEP bounds</u> on Higgs, chargino and neutralino masses

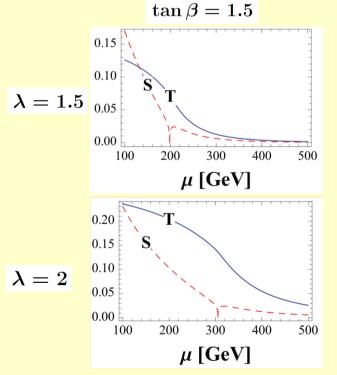
Not strong constraints after having ensured that the Higgs is not tachionic

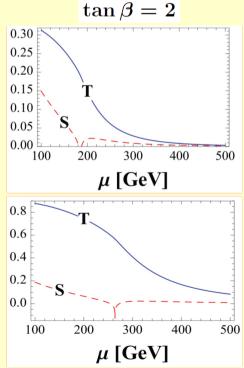
The lightest neutralino is massless for

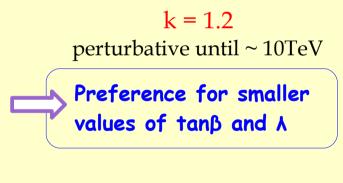
$$\mu^2 = \frac{\lambda}{k} \frac{v^2 \lambda^2 \sin 2\beta}{2}$$

Experimental constraints (1)

Is this theory viable in spite of the several experimental constraints?


<u>▶ LEP bounds</u> on Higgs, chargino and neutralino masses


Not strong constraints after having ensured that the Higgs is not tachionic


The lightest neutralino is massless for

$$\mu^2 = \frac{\lambda}{k} \frac{v^2 \lambda^2 \sin 2\beta}{2}$$

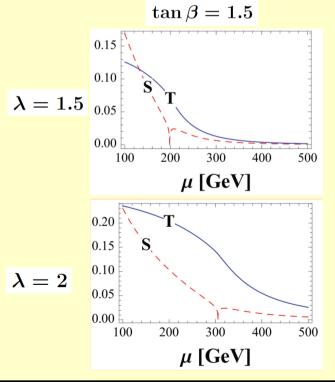
<u>▶ EWPTs</u>: main contribution to the T parameter is due to the Neutralinos

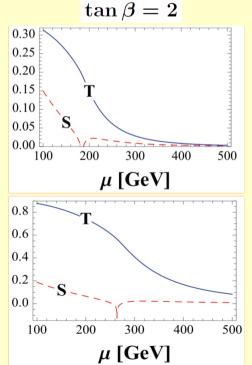
(We assume gauginos quite heavier than Higgsinos)

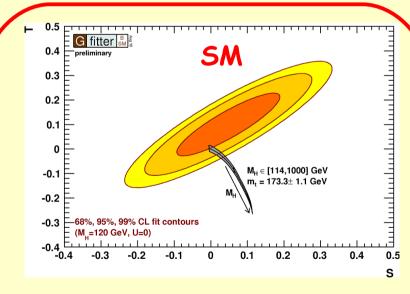
S. Gori

Experimental constraints (1)

Is this theory viable in spite of the several experimental constraints?

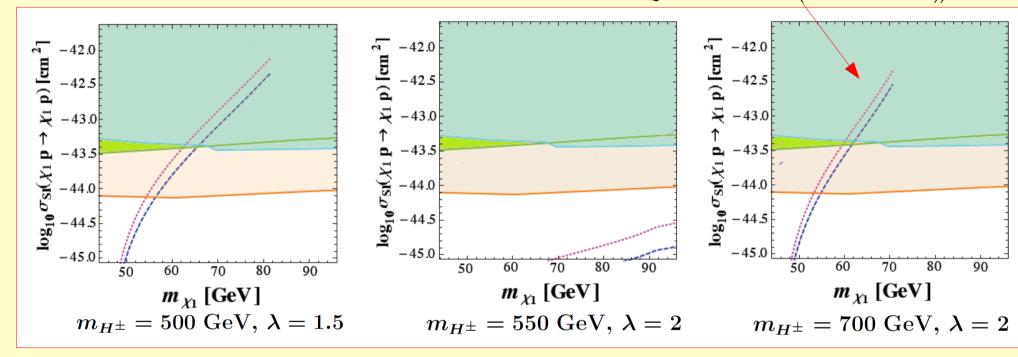

<u>▶ LEP bounds</u> on Higgs, chargino and neutralino masses


Not strong constraints after having ensured that the Higgs is not tachionic


The lightest neutralino is massless for

$$\mu^2 = \frac{\lambda}{k} \frac{v^2 \lambda^2 \sin 2\beta}{2}$$

<u>▶ EWPTs</u>: main contribution to the T parameter is due to the Neutralinos



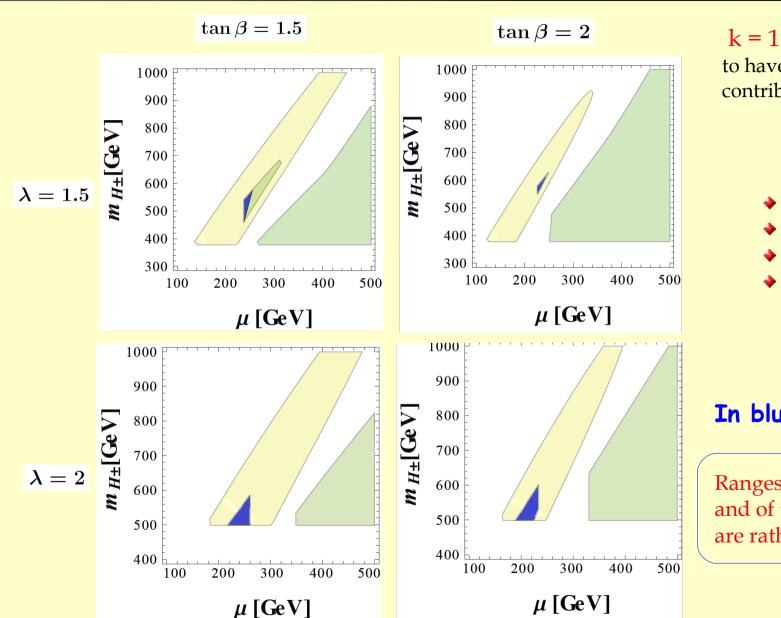
In spite of a large Higgs mass, the theory can be consistent with EWPTs because of the positive NP contributions to T

Experimental constraints (2)

→ Dark matter direct detection experiments

Computed using two different values for the quark form factors (from chiral perturbation theory(arXiv:0801.3656), or from QCD on the lattice(arXiv:0907.4177))

CDMS-II Science 327 (2010) 1619-1621


Xenon100: Phys. Rev. Lett. 100, 021303 (2008)

Xenon100: Phys.Rev.Lett. (2011)

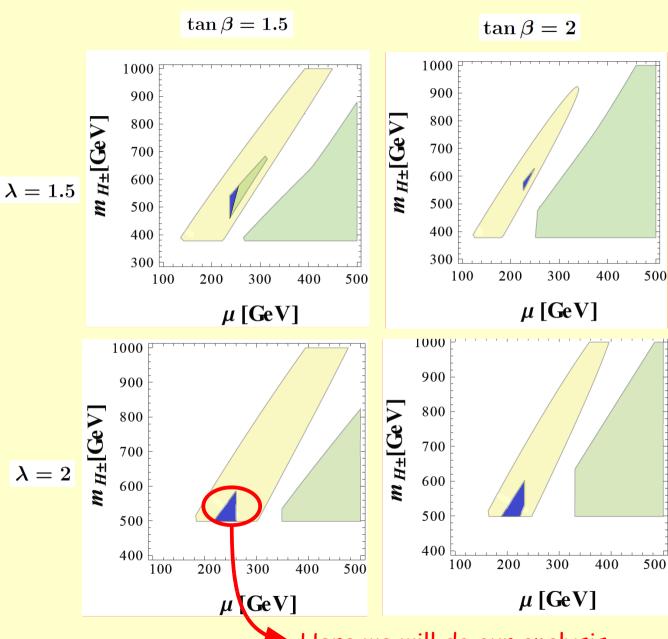
- Large values of λ and small values of the charged Higgs mass are favored
- A large m_{χ_1} is typically excluded

Both in the case of large/small Higgs mass μ ~(200-300) GeV is favored

Summary of the constraints

k = 1.2

to have in general smaller contributions to the T parameter


- ◆ Correct EWSB;
- ◆ LEP bounds;
- **♦** EWPTs;
- ♦ DM direct detection

In blue the allowed region

Ranges for the mass of chargino and of the charged Higgs boson are rather limited

S. Gori

Summary of the constraints

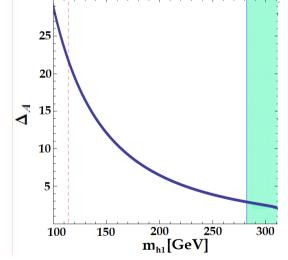
k = 1.2

to have in general smaller contributions to the T parameter

- ◆ Correct EWSB;
- ◆ LEP bounds;
- **♦** EWPTs;
- ♦ DM direct detection

In blue the allowed region

Ranges for the mass of chargino and of the charged Higgs boson are rather limited


Here we will do our analysis

Naturalness and heavy sparticles

- ♦ In a generic theory the EW scale depends on several dimensionful parameters $v^2 = v^2(a_i)$
- ◆ For small variations of these parameters it is natural to have also small variations of the EW scale

$$lacksquare$$
 Definition of fine tuning $\Delta_{_{
m ai}}$ $\Delta_{a_j} \equiv \left| rac{a_j^2}{v^2} rac{d\,v^2(a_i)}{d\,a_j^2}
ight|$ Barbieri, Giudice, Nucl.Phys.B306

- In our theory, we have to compute the fine tuning with respect to (μ_s, m_1, m_2, G, A)
- ◆ Only the latter is relevant:

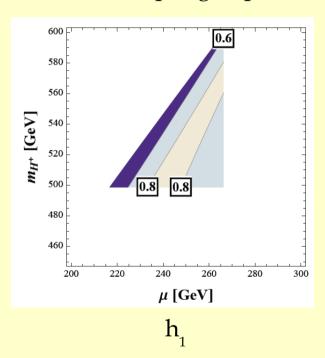
Theory is much less tuned for a heavy Higgs boson

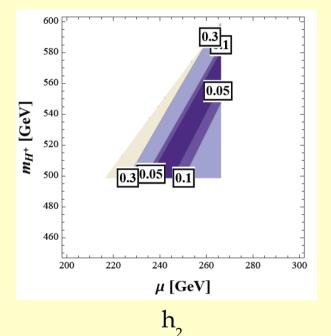
◆ Heavy squarks are allowed (but not required) with a moderate level of fine tuning:

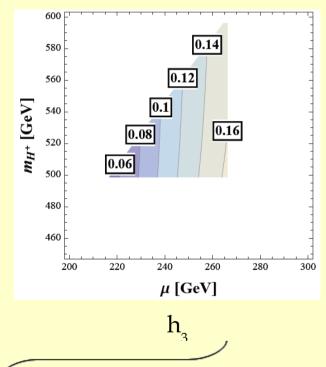
$$\Delta = \left| \frac{m_{\tilde{Q}}^2}{v^2} \frac{d\,v^2}{d\,m_{\tilde{Q}}^2} \right| \sim \left| \frac{m_{\tilde{Q}}^2}{v^2} \, \frac{d\,v^2}{d\,m_2^2} \, \frac{d\,m_2^2}{d\,m_{\tilde{Q}}^2} \right| \qquad \Delta \sim \frac{m_{\tilde{Q}}^2}{v^2} \, \frac{3\log^2\frac{\Lambda_{\rm mess}}{\rm TeV}}{4\pi^2\sin^2\beta} \frac{dv^2}{dm_2^2} \quad \text{Not huge dependence for large values of } \lambda$$

$$\Delta \sim$$

$$rac{3 \log^2 rac{\Lambda_{
m mess}}{
m TeV}}{4 \pi^2 \sin^2 eta}$$


$$\left(rac{dv^2}{dm_2^2}
ight)$$


Production of the Higgs bosons at the LHC

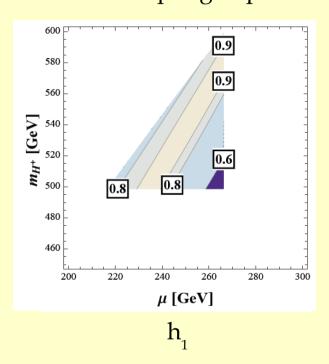

1. Gluon gluon fusion

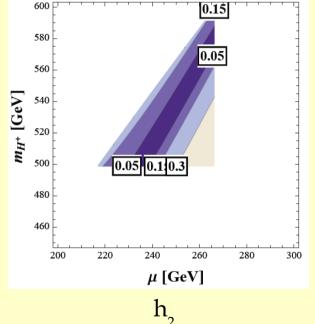
 $\lambda = 2$ k = 1.2 $an \beta = 1.5$

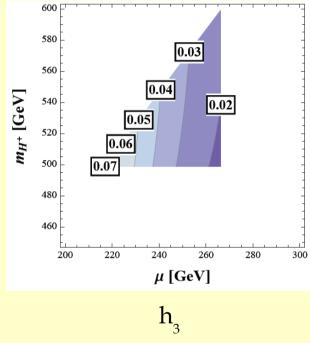
Reduced couplings squared with up-type quarks:

Significantly coupled

The two heavier states are sufficiently coupled


Possibility of producing at the LHC all the three Higgs bosons through gluon fusion

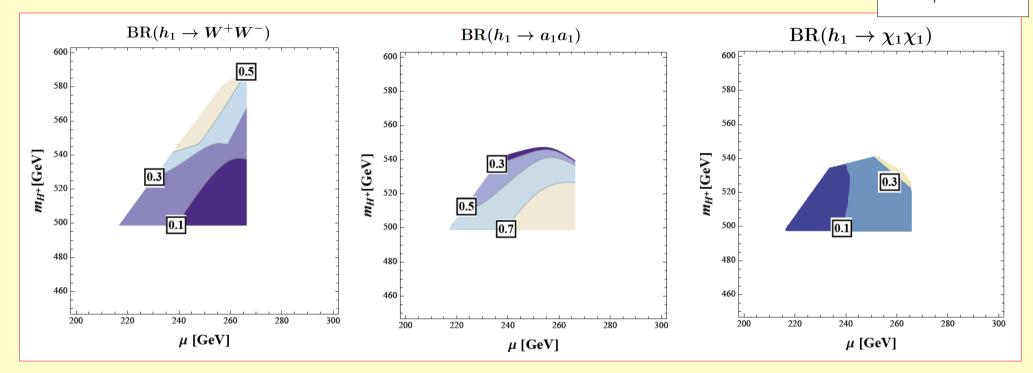

Production of the Higgs bosons at the LHC


2. Vector boson fusion

Reduced couplings squared with gauge bosons:

 $\lambda = 2$

Significantly coupled

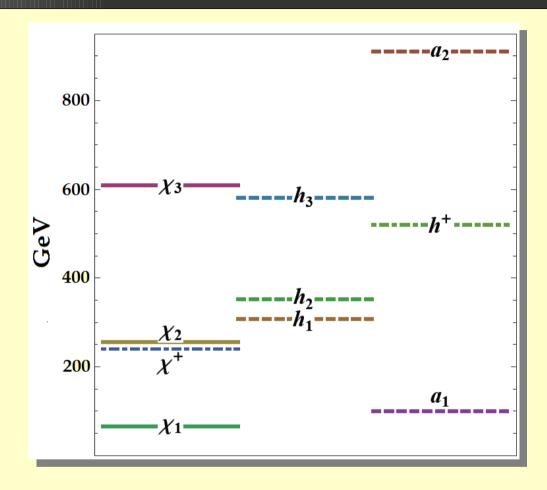

The heaviest state is rather decoupled

Difficulty of producing the heaviest Higgs boson at the LHC through vector boson fusion

Decays of the lightest Higgs boson

Three main decay modes:

$$\lambda = 2$$
 $k = 1.2$
 $an \beta = 1.5$


- ◆ Rather reduced decay of the Higgs into WW Higgs not found at the LHC yet.
- lacktriangle Higgs could be observed earlier in the non-SM decay $h o a_1 a_1 o auar au bar b$ Still not for a early LHC
- ◆ A large fraction of Higgs bosons decay invisibly into two LSPs

S. Gori

A benchmark point

A typical configuration:

$$\lambda = 2 \ k = 1.2 \ aneta = 1.5 \ \mu = 240 \ {
m GeV} \ m_{H^+} = 520 \ {
m GeV}$$

		WW						$\Gamma \ [{ m GeV}]$
_				(0.090)				
		I I		(0.179)				1
h_3	0.023	0.047	0.039	0.461	0.013	0.165	0.255	48.2

Conclusions

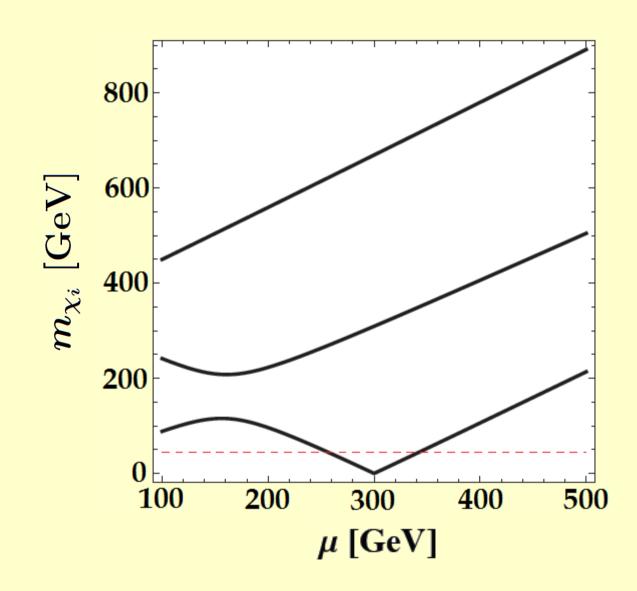
What

Scale invariant NMSSM as an effective field theory valid up to ~10 TeV

Main Consequences

- ightharpoonup It raises dramatically the mass of the lightest Higgs boson: $M_{h1} \sim$ (200-300) GeV
- It generates a μ term that scales as the lightest Higgs mass (it addresses naturally the μ problem)
- ◆ In spite of the large Higgs mass, EWPTs can be easily satisfied

Predictions

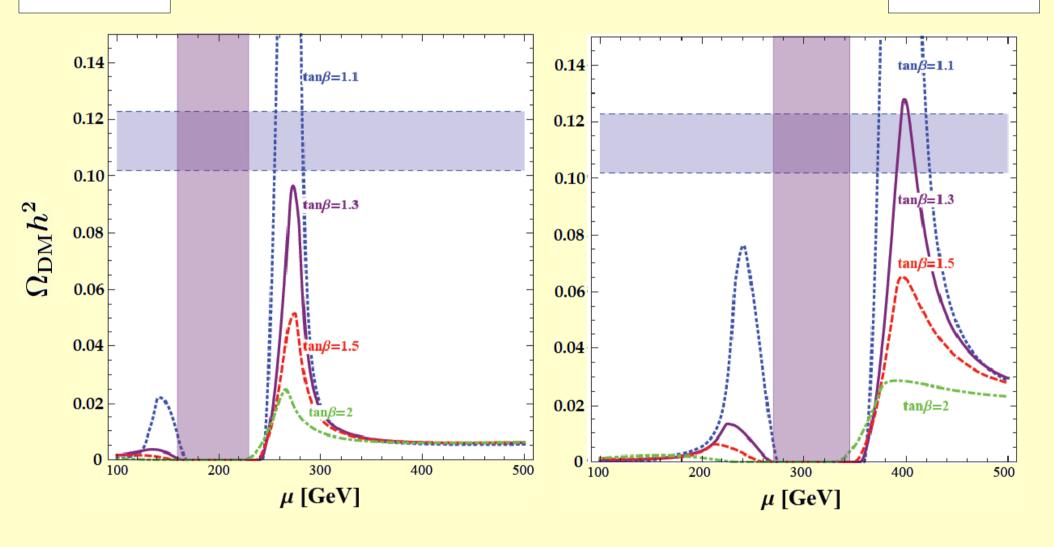

Predictions in the region of parameter space allowed by the experiments (LEP, EWPTs, DM direct detection)

- ◆ Lightest chargino rather close in mass to the lightest Higgs boson
- ◆ Lightest neutralino with a mass smaller than ~100 GeV
- lacktriangle Lightest Higgs boson mainly decaying into two pseudoscalars $h o a_1a_1 o auar au bar b$
- ◆ Possibility of discovery the heavier Higgs bosons produced through gluon gluon fusion

Outlook: detailed study of the collider signature of the model

Backup (1)

$$\lambda=2 \ k=1.2 \ aneta=1.5$$



Backup (2)

$$k = 1.2$$
$$\lambda = 1.5$$

k = 1.2

 $\lambda = 2$

